Lagrange 2, 3, and 4 point interpolation y(x) ---> Y(X)
for uniform, equidistant old and new x-grids
where the X interval is identical to the x-interval
(i.e. min(x)=min(X) and max(x)=max(X))
Y = lagrange2_regularGrid (y, n) --- linear interpolation with len(Y) > len(y)
Y = lagrange3_regularGrid (y, n) --- quadratic interpolation
Y = lagrange4_regularGrid (y, n) --- cubic interpolation
Y = lagrange2_interpolate2 (y) --- interpolation for len(Y)-1=2*(len(y)-1)
Y = lagrange3_interpolate2 (y)
Y = lagrange4_interpolate2 (y)
Y = lagrange2_interpolate4 (y) --- interpolation for len(Y)-1=4*(len(y)-1)
Y = lagrange3_interpolate4 (y)
Y = lagrange4_interpolate4 (y)
Y = lagrange2_interpolate8 (y) --- interpolation for len(Y)-1=8*(len(y)-1)
Y = lagrange3_interpolate8 (y)
Y = lagrange4_interpolate8 (y)
Functions |
| |
- lagrange2_interpolate2(y)
- Lagrange 2-point interpolation with doubled number of intervals.
- lagrange2_interpolate4(y)
- Lagrange 2-point interpolation with quadrupled number of intervals.
- lagrange2_interpolate8(y)
- Lagrange 2-point interpolation with eightfold number of intervals.
- lagrange2_regularGrid(y, n)
- Lagrange 2 point interpolation for regular equidistant grid x to finer regular grid X of length n.
(assumes end points are identical: x[0]=X[0] and x[-1]=X[-1])
- lagrange3_interpolate2(y)
- Lagrange 3-point interpolation with doubled number of intervals.
- lagrange3_interpolate4(y)
- Lagrange 3-point interpolation with quadrupled number of intervals.
- lagrange3_interpolate8(y)
- Lagrange 3-point interpolation with eightfold number of intervals.
- lagrange3_regularGrid(y, n)
- Lagrange 3 point interpolation for regular equidistant grid x to finer regular grid X of length n.
(assumes end points are identical: x[0]=X[0] and x[-1]=X[-1])
- lagrange4_interpolate2(y)
- Lagrange 4-point interpolation with doubled number of intervals.
- lagrange4_interpolate4(y)
- Lagrange 4-point interpolation with quadrupled number of intervals.
- lagrange4_interpolate8(y)
- Lagrange 4-point interpolation with eightfold number of intervals.
- lagrange4_regularGrid(y, n)
- Lagrange 4 point interpolation for regular equidistant grid x to finer regular grid X of length n.
(assumes end points are identical: x[0]=X[0] and x[-1]=X[-1])
|
Data |
| |
r6 = 0.16666666666666666 |