| |
- Gauss(vGrid, vLine=0.0, S=1.0, gammaD=1.0)
- Doppler broadening: Gauss profile normalized to one, multiplied with line strength.
- Lorentz(vGrid, vLine=0.0, S=1.0, gammaL=1.0)
- Pressure broadening: Lorentz profile normalized to one, multiplied with line strength.
- LorentzMix(vGrid, vLine=0.0, S=1.0, gammaL=1.0, yMix=0.0)
- Pressure broadening: Lorentz profile incl. line mixing, normalized to one, multiplied with line strength.
See D. Edwards, SPIE Vol. 928 (1986), Eq. (4.5)
- Rautian(vGrid, vLine=0.0, S=1.0, gammaL=1.0, gammaD=1.0, gammaN=1.0)
- Rautian profile normalized to one, multiplied with line strength.
Broadening by thermal motion and state-perturbing collisions;
hard collision model for velocity-changing collisions; collisional perturbations uncorrelated
Philip L. Varghese and Ronald K. Hanson:
Collisional narrowing effects on spectral line shapes measured at high resolution [AO 23(14), 2376-2385, 1984]
- Voigt(vGrid, vLine=0.0, S=1.0, gammaL=1.0, gammaD=1.0)
- Voigt profile normalized to one, multiplied with line strength.
- VoigtMix(vGrid, vLine=0.0, S=1.0, gammaL=1.0, gammaD=1.0, yMix=0.0)
- Voigt profile normalized to one, multiplied with line strength.
- Voigt_Kuntz_Humlicek1(vGrid, vLine=0.0, S=1.0, gammaL=1.0, gammaD=1.0)
- Voigt profile normalized to one, multiplied with line strength.
Rational approximation for asymptotic region for large |x|+y.
Real part only using Kuntz (JQSRT, 1997) implementation with Ruyten's (JQSRT, 2003) correction.
- speedVoigt(vGrid, vLine=0.0, S=1.0, gammaL=1.0, gammaD=1.0, gamma2=1.0)
- Speed-dependent profile normalized to one, multiplied with line strength.
Boone, Walker, Bernath (JQSRT 112, 2011):
An efficient analytical approach for calculating line mixing in atmospheric remote sensing applications
Schreier (JQSRT 187, 2017): Computational Aspects of Speed-Dependent Voigt Profiles
- speedVoigtMix(vGrid, vLine=0.0, S=1.0, gammaL=1.0, gammaD=1.0, gamma2=1.0, yMix=0.0)
- Speed-dependent profile including Rosenkranz line mixing normalized to one, multiplied with line strength.
Boone, Walker, Bernath (JQSRT 112, 2011):
An efficient analytical approach for calculating line mixing in atmospheric remote sensing applications
F. Schreier (JQSRT 187, 2017): Computational aspects of speed-dependent Voigt profiles
- sqrt(...)
- sqrt(x)
Return the square root of x.
- vanVleckHuber(vGrid, vLine=0.0, S=1.0, gammaL=1.0, temp=250.0)
- Pressure broadening: VanVleck-Huber lineshape with tanh prefactor, multiplied with line strength.
See D. Edwards, SPIE Vol. 928 (1986), Eq. (4.3)
ARTS --- Buehler, Eriksson et al., JQSRT Vol. 91 (2005), Table 2
- vanVleckWeisskopf(vGrid, vLine=0.0, S=1.0, gammaL=1.0)
- Pressure broadening: VanVleck-Weisskopf lineshape without tanh prefactor, multiplied with line strength.
ARTS manual, eq. (3.12)
ARTS --- Buehler, Eriksson et al., JQSRT Vol. 91 (2005), Eq. (7)
See D. Edwards, SPIE Vol. 928 (1986), Eq. (4.3)
- voigtWidth(gammaL=1.0, gammaD=1.0)
- Half width half maximum (HWHM) of Voigt profile (Whiting's approximation).
|