Adrian Doicu, Thomas Trautmann, Franz Schreier

Numerical Regularization for Atmospheric Inverse Problems. Springer Praxis Books in Environmental Sciences, Springer and Praxis Publishing, 2010, XIII, 426 p, ISBN 978-3-642-05438-9, Hardcover

This research monograph presents and analyzes numerical algorithms for atmospheric retrieval, pulling together all the relevant material in a consistent, very powerful manner. The subject of this book is a hot topic with currently no monographic support. It is more advanced, specialized and mathematical than its competitors, and a comprehensive book on regularization techniques for atmospheric science is much needed for further development in this field. It

- Presents regularization methods for atmospheric retrieval, based on the authors work
- Focuses on computational aspects but also provides some theoretical results
- Surveys the state-of-the-art numerical methods for solving discrete ill-posed problems
- Analyzes the existing numerical algorithms and discusses practical implementation issues
- Illustrates with examples from atmospheric remote sensing the various methods in action

Table of Contents

- 1) Remote sensing of the atmosphere
- 2) Ill-posedness of linear problems
- 3) Tikhonov regularization for linear problems
- 4) Statistical inversion theory
- 5) Iterative regularization methods for linear problems
- 6) Tikhonov regularization for nonlinear problems
- 7) Iterative regularization methods for nonlinear problems
- 8) Total least squares
- 9) Two direct regularization methods
- A) Analysis of continuous ill-posed problems
- B) Standard-form transformation for rectangular regularization matrices
- C) A general direct regularization method for linear problems
- D) Chi-square distribution
- E) A general iterative regularization method for linear problems
- F) Residual polynomials of the LSQR method
- G) A general direct regularization method for nonlinear problems
- H) A general iterative regularization method for nonlinear problems
- I) Filter factors of the truncated total least squares method
- J) Quadratic programming

